Electronic and transport properties in circular graphene structures with a pentagonal disclination

نویسندگان

  • Esther Jódar
  • Antonio Pérez–Garrido
  • Fernando Rojas
چکیده

: We investigate the electronic and transport properties of circular graphene structures (quantum dots) that include a pentagonal defect. In our calculations, we employ a tight-binding model determining total and local density of states, transmission function and participation number. For the closed structure, we observe that the effect of the defect is concentrated mainly on energies near to zero, which is characteristic of edge states in graphene. The density of states and transmission functions for small energies show several peaks associated with the presence of quasi-bound states generated by the defect and localized edge states produced by both the circular boundaries of the finite lattice and induced by the presence of the pentagonal defect. These results have been checked by calculating the participation number, which is obtained from the eigenstates. We observe changes in the available quasi-bound states due to the defect and the creation of new peaks in the transmission function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method

We describe how to obtain electronic transport properties of disordered graphene, including the tight binding model and nearest neighbor hopping. We present a new method for computing, electronic transport wave function and Greens function of the disordered Graphene. In this method, based on the small rectangular approximation, break up the potential barriers in to small parts. Then using the f...

متن کامل

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Electronic Behavior of Doped Graphene Nanoribbon Device: NEGF+DFT

Quantum transport properties of pure and functioned infinite lead-connection region-lead systembased on the zigzag graphene nanoribbon (2-zGNR) have been investigated. In this work the effectof the doping functionalization on the quantum transport of the 2-zGNR has been computationallystudied. Also, the effect of the imposed gate voltages (-3.0, 0.0 and +3.0 V) and bias voltages 0.0 to2.0 V hav...

متن کامل

Geometrical effects on the thermoelectric properties of ballistic graphene antidot lattices

The thermoelectric properties of graphene-based antidot lattices are theoretically investigated. A third nearest-neighbor tight-binding model and a fourth nearest-neighbor force constant model are employed to study the electronic and phononic band structures of graphene antidot lattices with circular, rectangular, hexagonal, and triangular antidot shapes. Ballistic transport models are used to ...

متن کامل

Electronic and Optical Properties of the Graphene and Boron Nitride Nanoribbons in Presence of the Electric Field

Abstract: In this study, using density functional theory and the SIESTA computationalcode, we investigate the electronic and optical properties of the armchair graphenenanoribbons and the armchair boron nitride nanoribbons of width 25 in the presence of atransverse external electric field. We have observed that in the absence of the electricfield, these structures are se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013